Skip to main content
  1. Right Decisions
  2. GGC - Clinical Guidelines
  3. Paediatrics
  4. Back
  5. Kidney Diseases (Paediatric)
  6. Renal Tubular Disease, Renal Unit, Paediatrics (495)
Important: please update your RDS app to version 4.7.3 Details with newsletter below.

Please update your RDS app to v4.7.3

We asked you in January to update to v4.7.2.  After the deployment planned for 27th February, this new update will be needed to ensure that you are able to download RDS toolkits even when the RDS website is not available. We will wait until as many users as possible have downloaded the new version before switching off the old system for app downloads and moving entirely to the new approach.

To check your current RDS version, click on the three dots bottom right of the RDS app screen. This takes you to a “More” page where you will see the version number. 

To update to the latest release:

 On iPhones – go to the Apple store, click on your profile icon top right, scroll down to see the apps waiting to be updated and update the RDS app.

On Android phones – these can vary, but try going to the Google Play store, click on your profile icon top right, click on “Manage apps and device”, select and update the RDS app.

Right Decision Service newsletter: February 2025

Welcome to the February 2025 update from the RDS team

1.     Next release of RDS

 

A new release of RDS is planned (subject to outcomes of current testing) for week beginning 24th February. This will deliver:

 

  • Fixes to mitigate the recurring glitches with the RDS admin area and the occasional brief user interface outages which have arisen following implementation of the new distributed technology infrastructure in December 2024.

 

  • Capability to embed content from Google calendar, Google Maps, Daily Motion, Twitter feeds, Microsoft Stream into RDS pages.

 

  • Capability to include simple multiplication in RDS calculators.

 

The release will also incorporate a number of small fixes, including:

  • Exporting of form within Medicines Sick Day Guidance in polypharmacy toolkit
  • Links to redundant content appearing in search in some RDS toolkits
  • Inclusion of accordion headers alongside accordion text in search result snippets.
  • Feedback form on mobile app.
  • Internal links on mobile app version of benzo tapering tool

 

We will let you know when the date and time for the new release are confirmed.

 

2.     New RDS developments

There is now the capability to publish toolkits on the web with left hand side navigation rather than tiles on the homepage. To use this feature, turn on the “Toggle navigation panel” option at the top of the Page settings menu at toolkit homepage level – see below. Please note that publication to downloadable mobile app for this type of navigation is still under development.

The Benzodiazepine tapering tool is now available as part of the RDS toolkit for the national benzodiazepine prescribing guidance developed by the Scottish Government Effective Prescribing team. The tool uses this national guidance developed with a wide-ranging multidisciplinary group. This should be used in combination with professional judgement and an understanding of the needs of the individual patient.

3.     Archiving and version control and new RDS Search and Browse interface

Due to the intensive work Tactuum has had to undertake on the new technology infrastructure has pushed back the delivery dates again and some new requirements have come out of the recent user acceptance testing. It now looks likely to be an April release for the search and browse interface. The archiving and version control functionality may be released earlier. We’ll keep you posted.

4.     Statistics

At the end of January, Olivia completed the generation of the latest set of usage statistics for all RDS toolkits. If you would like a copy of the stats for your toolkit, please contact Olivia.graham@nhs.scot .

 

5.     Review of content past its review date

We have now generated reports of all RDS toolkit content that has exceeded its review date by 6 months or more. We will be in touch later this month with toolkit owners and editors to agree the plan for updating or withdrawing out of date content.

 

6.     Toolkits in development

Some important toolkits in development by the RDS team include:

  • National CVD prevention pathways – due for release end of March 2025.
  • National respiratory pathways, optimal cancer diagnostic pathways and cancer prehabilitation pathways from the Centre for Sustainable Delivery. We will shortly start work on the national cancer referral pathways, first version due for release via RDS around end of June 2025.
  • HIS Quality of Care Review toolkit – currently in final stages of quality assurance.

 

The RDS team and other information scientists in HIS have also been producing evidence summaries for the Scottish Government Realistic Medicine team, to inform development of national guidance around Procedures of Limited Clinical Value. This guidance will in due course be translated into an RDS toolkit.

 

7. Training sessions for new editors (also serve as refresher sessions for existing editors) will take place on the following dates:

  • Friday 28th February 12-1 pm
  • Tuesday 11th March 4-5 pm

 

To book a place, please contact Olivia.graham@nhs.scot, providing your name, organisation, job role, and level of experience with RDS editing (none, a little, moderate, extensive.)

 

To invite colleagues to sign up to receive this newsletter, please signpost them to the registration form  - also available in End-user and Provider sections of the RDS Learning and Support area.   If you have any questions about the content of this newsletter, please contact his.decisionsupport@nhs.scot  If you would prefer not to receive future newsletters, please email Olivia.graham@nhs.scot and ask to be removed from the circulation list.

With kind regards

 

Right Decision Service team

Healthcare Improvement Scotland

 

 

Renal Tubular Disease, Renal Unit, Paediatrics (495)

Warning Warning: This guideline is 780 day(s) past its review date.

Objectives

The renal tubule has many varied and complex physiological functions and it is therefore not surprising that renal tubular disease has a wide range of presentation. This document has been developed by clinicians within the Renal Unit.

The renal handling of phosphate is best described by the maximum tubular phosphate reabsorption corrected for GFR: TMP/GFR = PlPO4 – [UPO4 x PlCr] / [Ucr]. This may be estimated by the determination of phosphate and creatinine in a fasting blood and a simultaneously obtained urine sample. (Reference range: Brodehl J. Paediatric Nephrology 1994 (8): 645).

The commonest cause of an isolated defect in tubular phosphate reabsorption is X linked hypophosphataemic rickets (XLH). In this condition vitamin D metabolism is also abnormal since the level of 1,25 DHCC should be elevated in the presence of hypophosphataemia but is either normal or slightly reduced. XLH presents in late infancy with clinical and radiological rickets and growth retardation is a major feature.  The diagnosis is confirmed by the finding of persistent hypophosphataemia in the absence of a generalised tubulopathy and a low TMP/GFR.

Management of Disturbances of Tubular Phosphate Reabsorption

These patients should receive neutral phosphate (Phosphate Sandoz) 50- 100mg/kg per day given in five divided doses. In addition either one alpha DHCC or 1,25 DHCC should be given in order to increase intestinal calcium and phosphate reabsorption. Monitoring should be with intermittent plasma calcium measurements and early morning urine calcium/creatinine ratios and if necessary 24 hr. urinary calcium excretions (Should not exceed 0.1mmol/kg/day).

RTA describes a group of transport defects in bicarbonate reabsorption, H+ ion excretion or both. Presentation is that of a metabolic acidosis associated with hyperchloraemia and a normal plasma anion gap. Other causes of a normal plasma anion gap acidosis are GI bicarbonate loss, bowel augmentation cystoplasty/ileal loop diversion, adrenal insufficiency, TPN and drugs e.g. carbonic anhydrase inhibitors, cholestyramine.

3.1 Diagnostic Procedures in Metabolic Acidosis

The first step in the evaluation of a patient with metabolic acidosis is to calculate the plasma anion gap [Na – (CL + HCO3)]. The mean normal value varies from lab to lab but averages 9 +/- 3mEq/l. Albumin is the major unmeasured anion and a fall in plasma albumin of 1g/dl decreases the anion gap by 2.5mEq/l.

Urine pH, preferably early morning is useful since this is a measurement of the small amount of free H+ ions in the urine, and it is essential to measure urine pH using a pH meter. In the presence of a significant metabolic acidosis, if the distal tubular function is intact the urine pH should be < 5.5 at all ages and < 5.0 in older children.

The next step should be calculation of the urine anion gap [Na+ + K+ - Cl-], which has been proposed as an indirect index of urinary NH4 excretion.  

Pathogenesis

Nephrogenic diabetes insipidus (NDI) refers to an impairment of urine concentrating capacity due to resistance to the action of ADH. The problem can reflect resistance at the ADH site of action in the Collecting duct or interference with the counter current mechanism due, for example, to medullary injury or decreased sodium chloride reabsorption in the medullary aspect of the Loop of Henle. A mild form is relatively common in patients with chronic renal insufficiency. Inherited NDI in Children is a rare disorder resulting in variable degrees of resistance to ADH. It is generally transmitted in an X linked fashion with the genetic defect involving a number of different mutations in the V2 reception gene. A rarer autosomal form of NDI has been described in which defect is post receptor and lies in the ADH sensitive water channel Aquaporin 2. 

In normal children the plasma osmolality is maintained in the range 275 – 285 msom/kg despite variations in water and solute intake. In patients with NDI episodic dehydration and hypernatraemia is frequent.  Assessment of a patient with suspected urinary concentration defect should include plasma electrolytes, plasma calcium and urinary tract ultrasound. Assuming these investigations are normal, assessment of urine concentrating capacity by controlled water deprivation with or without DDAVP is warranted. One of the major advantages of a water deprivation test is the recognition of partial defects in ADH secretion/action. However, a water deprivation test is a potentially hazardous procedure and should under no circumstances be done in the presence of hypernatraemia and increased serum osmolality. In these circumstances DDAVP should be administered at a dose of 0.5ug/m2 by the intravenous, intramuscular or subcutaneous route or 5ug/m2 intranasally. Uosm should be repeated in four hours and an adequate urinary response is a Usom > 800msom/kg.

If the patient is adequately hydrated and the PNa is normal, a careful water deprivation test should be carried out over 6-8 hours or until 3% of the body weight is lost should this occur first. Each sample of urine passed within this period should be collected for measurement of volume and osmolality and if at any point the Usom exceeds 800msom/kg, the test can be aborted. At the end of the deprivation period, the Uosm and Posm should be estimated and if the Uosm is < 800mosm/kg, DDAVP should be given and a further Uosm and Posm checked four hours later.

In central DI (CDI), secondary to a complete defect in ADH secretion, and NDI there will be no significant change in Uosm during water deprivation but the Psom often rises to > 300msom/kg.

Following DDAVP, the Uosm should be > 800mosm/kg in CDI but will remain unchanged in NDI. In partial CDI the Uosm will be 300-800mosm/kg but will show an adequate response to DDAVP.

 

Management of NDI

All complications of NDI are prevented by the provision of an adequate fluid intake and in particular a target fluid intake should be prescribed. In addition to a low sodium diet, a Thiazide diuretic and NSAID may reduce urine output. The favoured combination at present is Chlorthiazide and Amiloride but Indomethacin may be added if this combination is not successful.

Bartter and Gitelman Syndromes

These syndromes are rare disorders with a characteristic set of metabolic abnormalities including hypokalaemia, metabolic alkalosis, high rennin and aldosterone levels, and in some patients, hypomagnesaemia. The primary defect in Bartter and Gitelman syndromes appears to be impaired sodium reabsorption in the loop of Henle and distal tubule respectively.

Clinical Features

Classical Bartter’s syndrome presents in early life and is often but not always associated with growth retardation and developmental delay. In addition to the biochemical abnormalities referred to above, polyuria and polydipsia and decreased urinary concentrating ability are also common. Urinary calcium excretion is increased and the plasma magnesium concentration is either normal or mildly reduced in most patients. Gitelman syndrome is a more benign condition and may not be diagnosed until late childhood or adult life. Hypomagnesiamia and urinary magnesium wasting are almost always present and patients may present with tetany.

Diagnosis

The diagnosis of these disorders is to a large extent one of exclusion. Surreptitious vomiting and diuretic abuse are the two major causes of unexplained hypokalaemia and metabolic alkalosis in normotensive patients. Vomiting is generally associated with a low urinary chloride concentration and the diagnosis of diuretic abuse can be confirmed (in the absence of a positive history) by urinary toxicology. Patients with Bartter and Gitelman syndromes tend to be euvolaemic with chloride excretion being equal to intake. The net effect is a urinary chloride concentration of > 40mmol/l.

Management 

In both conditions a combination of NSAID and potassium sparing diuretic usually brings the plasma potassium concentration into the low normal range and largely reverses the metabolic alkalosis. Most patients also require oral potassium, sodium and perhaps magnesium supplementation.

 

Pseudohypoaldosteronism and Liddle’s syndrome

The cortical collecting tubule contains two cell types with very different functions, the principal cell and the intercalated cell. The principal cell has sodium and potassium channels in the apical membrane and, as in all sodium reabsorbing cells Na-K-ATPase pumps in the basolateral membrane. The entry of luminal sodium into these cells primarily occurs down a concentration gradient through an ion specific sodium channel in the apical membrane. Aldosterone plays a central role in these transport processes, primarily by increasing the number of open sodium channels in the apical membrane. The sodium channel is characterised by sensitivity to Amiloride and administration of this diuretic leads to closure of the sodium channels. These observations have now been followed by the identification of two genetic disorders characterised by abnormal function of the sodium channel. Firstly, decreased function or resistance to aldosterone in pseudohypoaldosteronism (PHA) and increased function in Liddle’s syndrome.

Clinical Presentation and Genetics

PHA has two different modes of inheritance. Firstly autosomal recessive in which the defect is permanent and all aldosterone target organs are involved (kidney, lung, gut and salivary glands). Secondly autosomal dominant, in which the defect may improve with age in some cases and only involves the kidney. PHA typically presents in infancy with sodium wasting, hyponatraemia and severe hyperkalaemia. In addition to the typically severe fluid and electrolyte disturbance in the multiple target organ type, lung sodium channel activity is also impaired often leading to lower respiratory tract infection. Liddle’s syndrome is a rare autosomal dominant condition in which there is a primary increase in cortical tubular sodium re-absorption and in most cases an increase in potassium excretion. Patients present with hypertension, hypokalaemia and metabolic alkalosis similar to disorders caused by mineralocorticoid excess.

Management

Therapy of PHA consists of a high salt diet that prevents volume depletion and, by enhancing sodium delivery to the potassium excretory site in the collecting tubule, leads to increased potassium secretion and lowers plasma potassium concentration. Some patients respond to high dose Fludrocortisone or Carbenoxolone. The efficacy of Carbenoxolone in PHA is presumably related to its ability to antagonize corticosteroid metabolism thereby allowing cortisol that circulates in much higher concentration than aldosterone, to enhance mineralocorticoid activity peripherally. The management of Liddle’s syndrome includes sodium restriction and Amiloride.

Introduction

Fanconi syndrome is characterised by a generalised reduction in renal tubular function while GFR is not primarily affected. The key findings are excessive urinary loss of amino acids, glucose, phosphate, bicarbonate and other organic substrates handled by the proximal and distal tubule. Metabolic consequences are a normal anion gap metabolic acidosis, hypophosphataemia, hypokalaemia, dehydration, rickets, and growth retardation. The commonest cause of Fanconi syndrome in children is cystinosis. This is a metabolic condition characterised by accumulation of cystine in different organs and tissues. There are three forms of cystinosis, infantile (nephropathic), intermediate (adolescent) and adult (benign). Nephropathic cystinosis has been estimated to affect one in 100,000 children.

Clinical Manifestations of Cystinosis

The first clinical signs of nephropathic cystinosis appear between 3 and 6 months of age and are largely due to impaired proximal tubular reabsorption. The major extra renal manifestations are growth retardation and delayed puberty. Cystine deposition in the cornea is demonstrable by slit lamp examination and may be responsible for photophobia and blepharospasm. Other manifestations are hypothyroidism, insulin dependent diabetes mellitus, myopathy and long term neuropsychiatric manifestations.

Diagnosis of Cystinosis

The diagnosis of cystinosis can be confirmed by the determination of the cystine content of peripheral blood leucocytes or fibroblasts.

Management of Cystinosis

The initial aim should be of symptomatic treatment with fluid, electrolyte, phosphate and bicarbonate supplementation. Tubular loss of electrolytes may be drastically reduced by the use of Indomethacin (1-3mg/kg/day). Activated Vitamin D, Thyroxine and growth hormone are also necessary. Specific treatment with mercaptamine is now well established and if introduced in infancy any subsequent decline in GFR should be delayed or halted.

  • Ensure adequate urine flow by giving water at 60mls/m2/hour.
  • After one or two baseline urine samples, give:
    NH4CI 75mEq/m2 (infant) or 150 mEq/m2 (child)
    Via nasogastric tube over 15-30 minutes. (Mix with a minimum of 5mls water per 1 gram).
  • Sampling: Capillary gases    -     at 0 and 4 hours

Urine specimens  -    hourly from 0 to 6 hours

(For urinary pH, titratable acidity - TA - and NH4: in Universal containers - send to Biochemistry immediately)

Test interpretation (normal ranges):

Age

pH

TA ( Eq/min/1.73m2)

NH4

Preterm 1-3/52

5.76 ± 0.5

24.9 ± 13.4

29.3 ± 6.4

Term 1 - 3/52

5.0 ± 1.5

32.4 ± 8.2

55.8 ± 8.8

Infant 1 - 12/12

5.0

62 (43-111)

57 (42-79)

Child 3 - 15 years

5.5

52 (33-71)

73 (46-100)

See: Paediatric Nephrology 3rd Edn (1994) - Holliday Ed. pp. 238ff

Editorial Information

Last reviewed: 01/10/2016

Next review date: 10/02/2023

Author(s): Dr Deepa Athavale.

Version: 2

Approved By: Paediatric Clinical Effectiveness & Risk Committee

Document Id: 495