Bartter and Gitelman Syndromes
These syndromes are rare disorders with a characteristic set of metabolic abnormalities including hypokalaemia, metabolic alkalosis, high rennin and aldosterone levels, and in some patients, hypomagnesaemia. The primary defect in Bartter and Gitelman syndromes appears to be impaired sodium reabsorption in the loop of Henle and distal tubule respectively.
Clinical Features
Classical Bartter’s syndrome presents in early life and is often but not always associated with growth retardation and developmental delay. In addition to the biochemical abnormalities referred to above, polyuria and polydipsia and decreased urinary concentrating ability are also common. Urinary calcium excretion is increased and the plasma magnesium concentration is either normal or mildly reduced in most patients. Gitelman syndrome is a more benign condition and may not be diagnosed until late childhood or adult life. Hypomagnesiamia and urinary magnesium wasting are almost always present and patients may present with tetany.
Diagnosis
The diagnosis of these disorders is to a large extent one of exclusion. Surreptitious vomiting and diuretic abuse are the two major causes of unexplained hypokalaemia and metabolic alkalosis in normotensive patients. Vomiting is generally associated with a low urinary chloride concentration and the diagnosis of diuretic abuse can be confirmed (in the absence of a positive history) by urinary toxicology. Patients with Bartter and Gitelman syndromes tend to be euvolaemic with chloride excretion being equal to intake. The net effect is a urinary chloride concentration of > 40mmol/l.
Management
In both conditions a combination of NSAID and potassium sparing diuretic usually brings the plasma potassium concentration into the low normal range and largely reverses the metabolic alkalosis. Most patients also require oral potassium, sodium and perhaps magnesium supplementation.
Pseudohypoaldosteronism and Liddle’s syndrome
The cortical collecting tubule contains two cell types with very different functions, the principal cell and the intercalated cell. The principal cell has sodium and potassium channels in the apical membrane and, as in all sodium reabsorbing cells Na-K-ATPase pumps in the basolateral membrane. The entry of luminal sodium into these cells primarily occurs down a concentration gradient through an ion specific sodium channel in the apical membrane. Aldosterone plays a central role in these transport processes, primarily by increasing the number of open sodium channels in the apical membrane. The sodium channel is characterised by sensitivity to Amiloride and administration of this diuretic leads to closure of the sodium channels. These observations have now been followed by the identification of two genetic disorders characterised by abnormal function of the sodium channel. Firstly, decreased function or resistance to aldosterone in pseudohypoaldosteronism (PHA) and increased function in Liddle’s syndrome.
Clinical Presentation and Genetics
PHA has two different modes of inheritance. Firstly autosomal recessive in which the defect is permanent and all aldosterone target organs are involved (kidney, lung, gut and salivary glands). Secondly autosomal dominant, in which the defect may improve with age in some cases and only involves the kidney. PHA typically presents in infancy with sodium wasting, hyponatraemia and severe hyperkalaemia. In addition to the typically severe fluid and electrolyte disturbance in the multiple target organ type, lung sodium channel activity is also impaired often leading to lower respiratory tract infection. Liddle’s syndrome is a rare autosomal dominant condition in which there is a primary increase in cortical tubular sodium re-absorption and in most cases an increase in potassium excretion. Patients present with hypertension, hypokalaemia and metabolic alkalosis similar to disorders caused by mineralocorticoid excess.
Management
Therapy of PHA consists of a high salt diet that prevents volume depletion and, by enhancing sodium delivery to the potassium excretory site in the collecting tubule, leads to increased potassium secretion and lowers plasma potassium concentration. Some patients respond to high dose Fludrocortisone or Carbenoxolone. The efficacy of Carbenoxolone in PHA is presumably related to its ability to antagonize corticosteroid metabolism thereby allowing cortisol that circulates in much higher concentration than aldosterone, to enhance mineralocorticoid activity peripherally. The management of Liddle’s syndrome includes sodium restriction and Amiloride.