TRACHEAL SUCTION OF THE MECHANICALLY VENTILATED NEONATE

TARGET	Neonatal Service in NHS Lanarkshire	
AUDIENCE		
PATIENT GROUP	Mechanically ventilated neonates on the neonatal unit	

Clinical Guidelines Summary

- Tracheal suction is necessary to maintain the patency of a tracheal tube (1,9).
 However tracheal suction is not without risk and therefore should only be carried out when required and not as a routine intervention (1,4,7,10).
- <u>Pre-oxygenation with 100% is not recommended unless clinically indicated</u>, an increase of 10%-20% for 30-60 seconds prior to suction event <u>if required</u> to maintain targeted oxygen saturations is usually sufficient (4,7,22).
- The size of suction catheter should not occlude more than 70% of the tracheal tube, this equates to double the size of the tracheal tube (size 3 tracheal tube would use size 6 suction catheter) (22). However the smallest size of suction catheter that should be used is a size 6 (unless size 2.0 ETT in situ then it should be 5fr) as the 5fr suction catheter is likely to require more suction passes to efficiently clear the secretions, resulting in loss of lung volume.
- A negative pressure of 50-100mmHg is recommended which is the equivalent of around 10kPa (4,7) but should not exceed 15kPa (26).
 Inappropriate catheter selection and/or high vacuum pressures can cause large negative tracheal pressures leading to atelectasis, loss of lung volume and mucosal trauma (3,14,27).
- A visual step-by-step guide is available on pages 9-17.

Contents

1.	Background	2
2.	Indications for suctioning	3
3.	Pre-oxygenation	3
4.	Suction catheter size	3
5.	Depth of insertion	4
6.	Saline instillation	4
7.	Preparation of equipment	5
8.	Assessment	6
9.	Patient and parent preparation	7
10	.Task	7
11.	. Visual step-by-step guide	9
12	References	18

Background

Infants frequently require the use of an artificial airway and mechanical ventilation to support respiration and maintain oxygenation, especially when they are born prematurely ⁽⁴⁾. Tracheal tubes form artificial airways which bypass the normal physiological processes providing an easy route for microbial invasion ^(5,6) and may increase mucous production as a result of irritation generated in the airway mucosa ^(4,7). Poor or absent cough caused by prematurity, sedation, paralysis or disease can result in impaired secretion clearance leading to lung collapse, consolidation and ventilator associated pneumonia (VAP) ⁽⁸⁾. Therefore, tracheal suction is required to prevent airway obstruction whilst optimising oxygenation and ventilation ^(1,9). Clifton-Koeppel ⁽¹⁾ suggests that due to the small sizes of tracheal tubes used within neonatal units, suction is especially critical to avoid tube obstruction from mucous and debris.

Suctioning can be described as the mechanical aspiration of secretions from an artificial airway ^(5,10). Cone et al ⁽¹¹⁾ suggest that suctioning of a tracheal tube is one of the most common nursing procedures with infants who are ventilated. However this procedure is associated with numerous potential complications ^(7,9,10-15). Complications include; bradycardia due to vagal nerve stimulation; hypoxemia which may result in cardiovascular instability leading to hypotension and even cardiac arrest; pulmonary hypertension; raised intracranial pressure (ICP) with increased cerebral blood flow; bleeding caused by mucosal trauma; infection; atelectasis; loss of lung volume; bronchospasm; infection; pneumothorax and severe anxiety, pain and distress to the patient which can result in a cardiovascular stress response or accidental extubation ^(1-5,8-11,13,16-21).

Indications for Suctioning

Tracheal suction should only be performed when necessary (1,4,7,10) and not as a routine intervention (5) but following a comprehensive clinical assessment (3). Indications for tracheal

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

suction include; visible secretions in tracheal tube; audible secretions on auscultation; increased work of breathing; reduced oxygen saturations; increased carbon dioxide level; the presence of a saw tooth pattern in pressure volume waveform; decreased tidal volumes when using pressure control ventilation; increased pressures when using volume controlled ventilation; reduced chest wall vibration when oscillated; suspected aspiration of gastric or upper airway secretions (1,3,6,22). Inefficient suctioning can result in the obstruction of the tracheal tube, the need for re-intubation resulting in atelectasis (1).

Pre-oxygenation

Pre-oxygenation using 100% oxygen in neonates has been associated with retinopathy of prematurity, alveolar and tracheobronchial changes, lung parenchyma, oxidative stress leading to inflammatory responses ⁽⁷⁾, chronic lung disease and periventricular leukomalacia with the potential for long term sequale, ^(4,23) therefore is not recommended unless clinically indicated ⁽¹⁾. Pre-oxygenation should instead be based on the individual patient and should be increased in accordance with clinical need to maintain targeted saturation levels ⁽⁷⁾. Gonzalez-Cabello et al ⁽²⁴⁾ and Pritchard et al ⁽²³⁾ suggest that a 20% increase in oxygen is likely as effective as hyper oxygenation with 100% oxygen, however it is recognised that an increase of up to 10% for 30-60 seconds is sufficient for most neonates ^(4,7,22). This is also the case with patients with duct dependent systemic perfusion or balanced circulation who will usually need low inspired oxygen to prevent pulmonary over circulation and systemic hypo perfusion ⁽²⁵⁾. Inspired oxygen can then be weaned based on individual patient parameters ⁽²⁶⁾

Suction Catheter Size

Ideally the suction catheter should not occlude more that 50% of the tracheal tube ^(3,5,22). Gonclaves et al ⁽⁷⁾ recognise that this may be difficult with low birth weight infants due to narrow tracheal tubes. The AARC ⁽²²⁾ recommend that the suction catheter should not occlude more than 70% of the internal diameter. This equates to a suction catheter double the size of the tracheal tube, however the smallest size possible to effectively clear secretions should be utilised. For a size 2.0 ETT a size 5fr should be utilised, for larger tubes the smallest suction catheter size should be a 6fr as use of a 5fr will likely result in more suction passes to clear secretions possibly leading to atelectasis. Suction vacuum pressure should be set as low as possible to effectively clear secretions ⁽²²⁾. A negative pressure of 50-100mmHg is recommended which is the equivalent of around 10kPa ^(4,7) but should not exceed 15kPa ⁽²⁶⁾. Inappropriate catheter selection and/or high vacuum pressures can cause large negative tracheal pressures leading to atelectasis, loss of lung volume and mucosal trauma ^(3,14,27).

Depth of Insertion

There are no known benefits to performing deep tracheal suction which is related to an increased risk of mucosal trauma, inflammatory changes, focal epithelial loss, damage to the

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

carina and erosion of the distal tracheal tissue ^(1,3,22,28) therefore shallow suctioning is recommended in order to reduce these risks ^(1,22,29). Morrow and Argent ⁽³⁾ recommend that the suction catheter should only be passed to the end of the tracheal tube which can be determined by direct measurement. Length is determined by using the centimetre markings on the ETT and adding the additional space of the ETT connector ⁽²⁶⁾.

Saline Instillation

It is hypothesized that normal saline instillation may loosen secretions, increase the amount of secretions removed, and aid in the removal of tenacious secretions however there is insufficient evidence to support this hypothesis (22). Caruso et al (30) believe that normal saline instillation prior to tracheal suction may be associated with decreased incidence of microbiological proven VAP. However, the majority of authors do not consider the instillation of normal saline to be beneficial and may actually be harmful to patients (3,5,10,31-34). Therefore, instillation of normal saline prior to tracheal suction should not be routine practice (22,31). Clifton-Koeppel (1) suggest that normal saline may be useful as a lubricant to allow the suction catheter to pass more easily, however the volume of saline required would be very small. There are very few studies regarding the volume of saline to be used however anecdotal evidence suggests volumes of 0.1-0.2ml/kg (4,7). Effective humidification of the ventilator circuit prevents the build up of thick, tenacious secretions thus reducing the need for instillation of normal saline (33,34).

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Preparation of Equipment

Procedure

Rationale

Equipment should be checked at	To ensure equipment readily available if
beginning of each shift	suction required quickly
Vacuum generator set at 10kPa which	To minimise risk of mucosal damage and
can be checked by occluding suction	loss of lung volume caused by high
tubing	suction pressures
Suction tubing of appropriate length and	To ensure tubing reaches patient and
cut at appropriate width	suction catheter fits snugly into tubing
Suction catheters available in various	Smallest suction catheter should be used
sizes appropriate to patient and tracheal	to minimise risk of mucosal trauma and
tube size. Suction catheter should be	loss of lung volume resulting in
determined by doubling the internal diameter of the tracheal tube e.g.: size 3.0	atelectasis
tube should be suctioned with size 6fr	
catheter. Ideally select smallest suction	
catheter to efficiently remove secretions.	Range of suction catheters available in
Smallest size of suction catheter utilised	case of reduced patency of tracheal tube which may require smaller suction
should be a size 6fr except when size 2.0	catheter. Conversely thicker secretions
ETT in use then size 5f should be used.	may require a larger size of catheter.
Where possible smaller size of suction	Different sizes of suction catheters may
catheter should also be available	also be required for suctioning of different
	orifices.
Checked and functioning Neopuff/ambu-	To ensure patient can be hand ventilated
bag	if required during suction procedure
Personal protective equipment (PPE)	As per local infection control policy
should include appropriate face mask,	
apron and gloves. Eye protection/visor if	
required as per infection control	
guidelines. Hand washing should be	
undertaken prior to procedure	
Ensure assistance available	To ensure safety of patient during and
	following suction procedure

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Documented length of tracheal tube and	To enable direct measurement and
readily available tape measure	reduce damage to trachea caused by
	deep suctioning

Assessment

Tracheal suction should be carried out following a comprehensive assessment of the baby. <u>Tracheal suction should not be carried out routinely</u> if there is no clinical indication to support it.

Indications	Rationale
Visible or audible secretions in ETT heard on auscultation.	To clear mucocillary secretions and maintain patency of ETT, ensuring optimal oxygenation and ventilation
Fall in oxygen saturations or pO ₂ on blood gas analysis.	
Rise in end-tidal CO ₂ or pCO ₂ in blood gas analysis.	
Decreased tidal volumes on ventilator when using pressure controlled ventilation.	
Increased peak inspiratory pressure to maintain set tidal volumes when using volume controlled ventilation	
Suspected aspiration of gastric contents	
Increased work of breathing	

This list is not exhaustive but includes general nursing considerations. Tracheal suction may be an urgent requirement and should be undertaken immediately if this is the case.

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Patient and Parent Preparation

Preparation aims to minimise potential adverse effects.

<u>Procedure</u>	Rationale
Explain procedure to family if present	To reduce anxiety and stress
Assess coping strategies and need for additional – analgesia (consider use of sucrose/EBM applied to cotton bud if procedure non-emergent, dosing as per sucrose guidelines). Consider use of containment hold/swaddling.	Ensure patient safety and optimise baby's comfort and compliance

Non-pharmacological pain management strategies such as a containment hold and swaddling have been proven to reduce procedural pain, eliminate stress and promote comfort therefore can be utilised if required ^(1,2).

Task

<u>Procedure</u> <u>Rationale</u>

This procedure requires appropriately trained staff with assistance readily available	Ensures patient safety
Prepare equipment, self and patient as previously discussed	See previous
Monitoring should include pulse oximetry, end tidal CO ₂ (if available) and clinical observation of baby.	To ensure patient safety and monitor adverse affects
Increase oxygen if required to achieve desired saturations.	To reduce risk of hypoxia during suction
Measure suction catheter against pre-cut tape measure (tape measure cut to documented length of ETT) or identify length on suction catheter if using suction catheter with centimetre markings	To ensure suction catheter inserted to correct depth without causing damage to the carina

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Disconnect from ventilator and advance suction catheter to pre-determined length. Apply suction on withdrawal only. Remove catheter from tracheal tube in one smooth motion lasting <5secs	To minimise time without ventilation therefore reducing the risk of hypoxia, hypercapnia and loss of lung volume
Re-connect to ventilator and post- oxygenate until oxygen levels within normal parameters	To reduce risk of hypoxia
Procedure should be repeated as few times as possible while efficiently removing secretions	Ensures patency of tracheal tube while minimising trauma
If suctioning different orifices i.e.: nasal or oral, a new suction catheter should be used	To prevent cross infection
Re-assess baby, post oxygenate with increased oxygen if required once suction procedure completed.	To prevent hypoxia
Reassess baby's breath sounds, oxygen saturations and tidal volumes. Wean oxygen back gradually to baseline if saturations acceptable	To assess efficacy of procedure To prevent hyperoxaemia
Dispose of equipment and wash hands as per hospital policy	To prevent cross infection

The baby should be **closely** monitored throughout procedure for adverse effects.

Saline instillation has proven controversial. **Routine** use of saline is **not recommended**, however in individual circumstances where the baby has thick tenacious secretions measured volumes of saline may be useful. Minimal amount of saline to be effective should be used and volume documented (see page 15).

There are no absolute contraindications to tracheal suction however special consideration should be given when frank pulmonary edema or haemorrhage is present

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

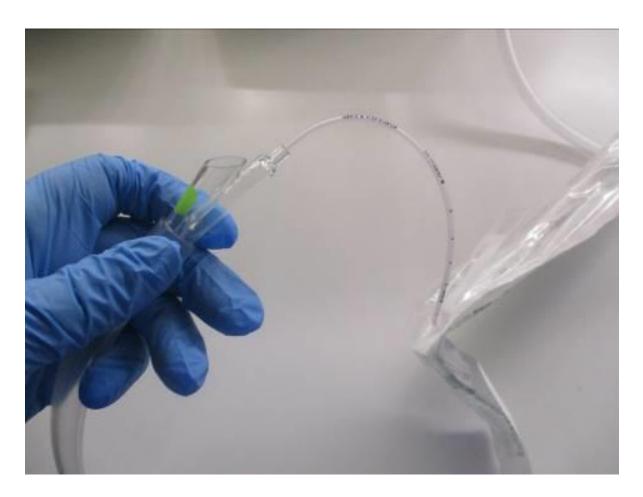
Visual Step-By-Step Guide to Tracheal Suction

Step 1.

Check suction pressure set at 10kPa by occluding tubing

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Step 2.


Ensure depth of suction is documented by using above method to calculate depth.

10cm (any visible marking on ETT) + 4 cm (length from ETT marking to end of portex) = 14cm (depth of suction)

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Step 3

Select appropriate sized suction catheter and connect to suction tubing ensuring snug fit

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Step 4.

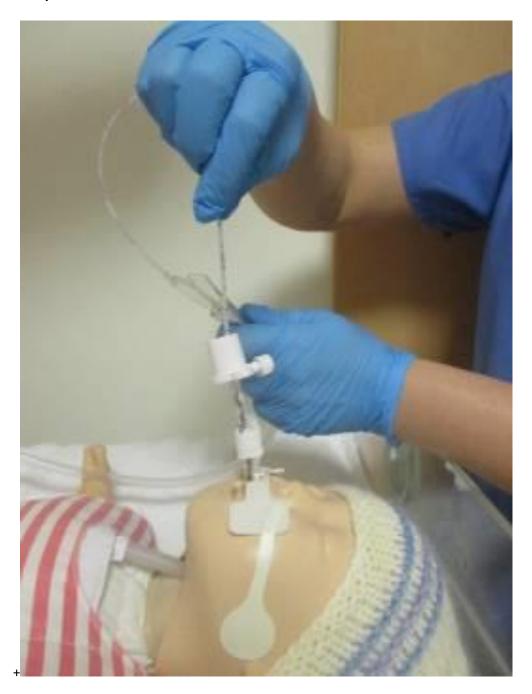
Utilise oxygen flush button on the ventilator **only if required** to maintain oxygen saturations within target range.

Oxygen flush set at 10% above set oxygen. Default settings in NHSL 10% for 60 seconds as per hospital settings and consultant consensus. Can be individualised to patient where required but 10-20% for 30-60 seconds is recommendation. Can be used prior to, post suction or both only if required. O2 flush can be stopped at any time by pressing button again.

Lead Author M Brooks		Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Uncontrolled when printed - access the most up to date version on www.nhslguidelines.

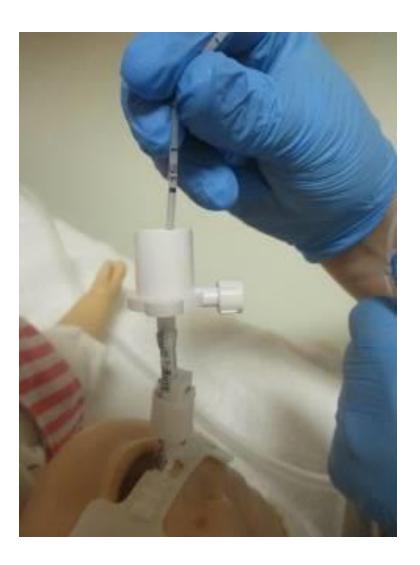
Step 5.



Disconnect ventilator from ETT

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Step 6



Insert suction catheter into ETT without occluding port on suction catheter to ensure no suction pressure applied

Lead Author	M Brooks	Date approved	31/07/2024
Version	10	Review Date	31/07/2027

Step 7.

Stop advancing suction catheter once desired depth of suction reached (pre measured as above)

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Step 8.

Withdraw suction catheter while applying suction by occluding port on suction catheter

Step 9.

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Reconnect to ventilator and ensure vital signs return to acceptable levels. Repeat suction if required following the above steps. Post oxygenate as required.

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

References

- CLIFTON-KOEPPEL, R. (2006) "ENDOTREACHEAL TUBE SUCTIONING IN THE NEWBORN: A REVIEW OF THE LITERATURE" NEWBORN AND INFANT NURSING REVIEWS. VOL.6, NO.2, PP.94-99
- 2. WARD-LARSON, C., HORN, R.A. AND GOSNELL, F. (2004) "THE EFFICACY OF FACILITATED TUCKING FOR RELIEVING PROCEDURAL PAIN OF ENDOTRACHEAL SUCTIONING IN VERY LOW BIRTHWEIGHT INFANTS. THE AMERICAN JOURNAL OF MATERNAL/CHILD NURSING. VOL.29, NO.3, PP.151-156
- 3. MORROW, B.M., ARGENT, A.C. (2008) "A COMPREHENSIVE REVIEW OF PAEDIATRIC ENDOTRACHEAL SUCTIONING: EFFECTS, INDICATIONS AND CLINICAL PRACTICE". PAEDIATRIC CRIT CARE MED. VOL. 9, NO. 5, PP.465-477
- 4. GARDNER, D.L AND SHIRLAND, L (2009) "EVIDENCE-BASED GUIDELINE FOR SUCTIONING THE INTUBATED NEONATE AND INFANT". NEONATAL NETWORK. VOL. 28, NO5, PP.281-301
- 5. DAY, T., FARNELL, S., WILSON-BARNETT, J. (2002) "SUCTIONING: A REVIEW OF CURRENT RESEARCH RECOMMENDATIONS". INTENSIVE AND CRITICAL CARE NURSING. VOL. 18, PP. 79-89
- 6. STOKOWSKI, L.A. (2009) "PREVENTING VENTILATOR ASSOCIATED PNEUMONIA IN INFANTS AND CHILDREN"
- 7. GONCLAVES, R.L, TSUZUKI,L.M. AND CARVALHO, M.G.S. (2015)
 "ENDOTRACHEAL SUCTIONING IN INTUBATED NEWBORNS: AN INTEGRATIVE LITERATURE REVIEW". REV BRAS TER INTENSIVA. VOL 27, NO 3, PP.284-292
- 8. PARATZ, J.D, STOCKTON, K.A. (2009) "EFFICACY AND SAFETY OF NORMAL SALINE INSTILLATION: A SYSTEMATIC REVIEW". PHYSIOTHERAPY. VOL. 95, PP. 241-250
- 9. MORROW, B., FUTTER, M., ARGENT, A. (2006) "EFFECT OF ENDOTRACHEAL SUCTION ON LUNG DYNAMICS IN MECHANICALLY VENTILATED PAEDIATRIC PATIENTS". AUSTRALIAN JOURNAL OF PHYSIOTHERAPY. VOL 52, PP. 121-126
- 10. EDMUNDS, M.W. AND SCUDDER, M.S., (2009) "BRINGING EVIDENCE TO THE PROCESS OF ENDOTRACHEAL SUCTIONING". INTENSIVE CRIT CARE NURSE, VOL. 25, PP. 21-30
- 11. CONE, S., PICKLER, R.H., GRAP, M.J., MCGRATH, J. AND WILIEY, P.M. (2013) "ENDOTRACHEAL SUCTIONING IN PRETERM INFANTS USING FOUR-HANDED VERSUS ROUTINE CARE". THE ASSOCIATEION OF WOMENS HEALTH, OBSTETRIC AND NEONATAL NURSES. VOL.42, PP.92-104
- 12. TREVISANUTO, D., DOGLIONI, N., and ZANARDO, V. (2009) "THE MANAGEMENT OF ENDOTRACHEAL TUBES AND NASAL CANNULAE: THE ROLE OF NURSES". EARLY HUMAN DEVELOPMENT. VOL. 85, PP. 85-87
- 13. BRUSCHETTINI, M., ZAPPETTINI, S., MOJA, L. AND CALEVO, M.G. (2015) "FREQUENCY OF ENDOTRACHEAL SUCTIONING FOR THE PREVENTION OF RESPIRATORY MORBIDITY IN VENTILATED NEDWBORNS (PROTOCOL). THE COCHRANE COLLABORATION. ISSUE 1.
- 14. KIRALY, N.J, TINGAY, D.G., MILLS, J.F., MORLEY, C.J. AND COPNELL, B. (2008) "NEGATIVE TRACHEAL PRESSURE DURING NEONATAL ENDOTRACHEAL SUCTION". PAEDIATRIC RESEARCH. VOL.64, NO.1, PP.29-33
- 15. TINGAY, D.G., COPNELL, B., MILLS, J.F., MORLEY, C.G.A AND DARAGAVILLE, P.A. (2007) "EFFECTS OF OPEN ENDOTRACHEAL SUCTION ON LUNG VOLUME

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

- IN INFANTS RECEIVING HFOV". INTENSIVE CARE MEDICINE. VOL.33, NO.4, PP.689-693
- 16. PEDERSON, C.M., ROSENDAHL-NIELSEN, M., HJERMIND, J. AND EGEROD, I. (2009) "ENDOTRACHEAL SUCTIONING OF THE ADULT INTUBATED PATIENT-WHAT IS THE EVIDENCE?" INTENSIVE AND CRITICAL CARE NURSING. NO.25, PP.21-30
- 17. REIGER, H., KUHLE, S., IPSIROGLU, O.S., HEINZL, H., POPOW, C.N. (2005) "EFFECTS OF OPEN VS CLOSED SYSTEM ENDOTRACHEAL SUCTIONING ON CEREBRAL BLOOD FLOW VELOCITIES IN MECHANICALLY VENTILATED LOW BIRTH WEIGHT INFANTS". MED. VOL 33, PP. 435-441
- 18. KAISER, J.R, GAUSS, C.H. AND WILLIAMS, D.K. (2008) "TRACHEAL SUCTIONING IS ASSOCIATED WITH PROLONGED DISTURBANCES OF CEREBRAL HAEMODYNAMICS IN VERY LOW BIRTHWEIGHT INFANTS". THE JOURNAL OF PERINATOLOGY. NO.28, PP.38-41
- 19. CORDERO, L., SANANES, M. AND ERAYERS, L.W. (2000) "COMPARISON OF A CLOSED (TRACH CARE MAC) WITH AN OPEN ENDOTRACHEAL SUCTION SYSTEM IN SMALL PREMATURE INFANTS. THE JOURNAL OF PERINATOLOGY. NO.3. PP.151-156
- **20.** YOUNGMEE, A. AND YONGHOON, J. (2003) "THE EFFECTS OF THE SHALLOW AND THE DEEP ENDOTRACHEAL SUCTIONING ON OXYGEN SATURATION AND HEART RATE IN HIGH RISK INFANTS." THE INTERNATIONAL JOURNAL OF NURSING STUDIES. NO.40, PP.97-104
- 21. HOELLERING, A.B., COPNELL, B., DARAGAVILLE, P.A., MILLS, J.F, MORLEY, C.J. AND TINGAY, D.G. (2008) "LUNG VOLUME AND CARDIORESPIRATORY CHANGES DURING OPEN AND CLOSED ENDOTRACHEAL SUCTION IN VENTILATED NEWBORN INFANTS". ARCH DIS CHILD FOETAL NEONATAL ED. VOL.93 PP.436-441
- 22. AARC (2010) "ENDOTRACHEAL SUCTION OF MECHANICALLY VENTILATED PATIENTS WITH ARTIFICIAL AIRWAYS". RESPIRATORY CARE. VOL. 55, NO.6, PP.758-764
- 23. PRITCHARD, M.A., FLENADY, V. AND WOODGATE, P.G (2003)
 "SYSTEMATIC REVIEW OF THE ROLE OF PREOXYGENATIONFOR
 TRACHEAL SUCTIONING IN VENTILATED NEWBORN INFANTS"
 PAEDIATR.CHILD HEALTH. NO.39, PP.163-165
- 24. GONZALEZ-CABELLO, H., FURUYA, M.E., VARGAS, M.H., TUDON, H., GARDUNO, J. AND GONZALES-AYALA, J. (2005) "EVALUATION OF ANTIHYPOXAEMIC MANEUVERS BEFORE TRACHEAL ASPIRATION IN MECHANICALLY VENTILATED NEWBORNS". PEDIATR PULMONOL. VOL.39, NO.1, PP.46-50
- 25. RYCHIK, J., BUSH, D.M, SPRAY, T.L., GAYNOR, W., WERNOVSKY, G. (2000) "ASSESSMENT OF PULMONARY/SYSTEMIC BLOOD FLOW RATIO AFTER FIRST STAGE PALLIATION FOR HYPOPLASTIC LEFT HEART SYNDROME: DEVELOPMENT OF A NEW INDEX WITH THE USE OF DOPLER ECHOCARDIOGRAPHY". THE JOURNAL OF THORACIC AND CARDIOVASCULAR SURGERY. VOL. 120, PP. 81-87
- 26. PATTIE, S. (2009) "ENDOTRACHEAL TUBE SUCTION OF VENTILATED NEONATES. THE ROYAL CHILDRENS HOSPITAL GUIDELINES (NURSING)"
- 27. HOUGH, J.L., SHEARMAN, A.D, LILEY, H., GRANT, C.A AND SCHIBLER, A. (2014) "LUNG RECRUITMENT AND ENDOTRACHEAL SUCTION IN VENTILATED PRETERM INFANTS MEASURED WITH ELECTRICAL

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

- IMPEDENCE TOMOGRAPHY". THE JOURNAL OF PAEDIATRICS AND CHILD HEALTH. VOL.50, PP.884-889
- 28. SPENCE, K., GILLIES, D., WATERWORTH, L. (2009) "DEEP VERSUS SHALLOW SUCTION OF ENDOTRACHEAL TUBES IN VENTILATED NEONATES AND YOUNG INFANTS (REVIEW)"
- 29. GILLIES, D. AND SPENCE, K. (2011) "DEEP VERSUS SHALLOW SUCTION OF ENDOTRACHEAL TUBES IN VENTILATED NEONATES AND YOUNG INFANTS (REVIEW). THE COCHRANCE COLLABORATION.
- 30. CARUSO, P., DENARI, S., SORAIA, A.L., RUIZ, A.L., DEMARZO, S.E., DEHEINZELIN, D. (2009) "SALINE INSTILLATION BEFORE TRACHEAL SUCTIONING DECREASES THE INCIDENCE OF VENTILATOR ASSOCIATED PNEUMONIA". CRIT CARE MED. VOL 37, NO 1, PP.32-38
- 31. KURIAKOSE, A. (2008) "USING THE SYNERGY MODEL AS BEST PRACTICE IN ENDOTRACHEAL TUBE SUCTIONING OF CRITICALLY ILL PATIENTS". DIMENSIONS OF CRITICAL CARE NURSING. VOL. 27, NO. 1, PP. 10-15
- 32. RAUEN, C.A., CHULAY, M., BRIDGES, E., VOLLMAN, K.M., ARBOUR, R. (2008) "SEVEN EVIDENCE-BASED PRACTICE HABITS: PUTTING SOME SACRED COWS OUT TO PASTURE". CRITICAL CARE NURSE. VOL. 28, NO. 2, PP. 98-124
- 33. HALM, M.A., KRISKO-HAGEL, K. (2008) "INSTILLING NORMAL SALINE WITH SUCTIONING: BENEFICIAL TECHNIQUE OR POTENTIALLY HARMFUL SACRED COW?" AMERICAN JOURNAL OF CRITICAL CARE. VOL 17, NO. 5, PP. 469-472
- 34. RIDLING, D.A., MARTIN, L.D., BRATTON, S.L. (2003) "ENDOTRACHEAL SUCTIONING WITH OR WITHOUT INSTILLATION OF ISOTONIC SODIUM CHLORIDE SOLUTION IN CRITICALLY ILL CHILDREN. AMERICAN JOURNAL OF CRITICAL CARE. VOL. 12, NO. 3, PP. 212-219

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

Appendices

1. Governance information for Guidance document

Lead Author(s):	Michelle Brooks, Neonatal Practice Educator
Endorsing Body:	Neonatal Clinical Effectiveness Group
Version Number:	Version 1.0
Approval date	31/07/2024
Review Date:	31/07/2027
Responsible Person (if different from lead author)	

CONSULTATION AND DISTRIBUTION RECORD			
Contributing Authors	Author		Lynne Montgomery, Neonatal Practice Educator, University Hospital Crosshouse
Consultation F Stakeholders:	Process	1	Reviewed and ratified by Neonatal Clinical Effectiveness Group 31st July 2024
Distribution			

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027

CHANGE RECORD					
Date	Lead Author	Change	Version		
		e.g. Review, revise and update of policy in line with contemporary professional structures and practice	1		
			2		
			3		
			4		
			5		

Lead Author	M Brooks	Date approved	31/07/2024
Version	1.0	Review Date	31/07/2027